Abelian Category
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, an abelian category is a
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) ...
in which morphisms and
objects Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ...
can be added and in which
kernel Kernel may refer to: Computing * Kernel (operating system), the central component of most operating systems * Kernel (image processing), a matrix used for image convolution * Compute kernel, in GPGPU programming * Kernel method, in machine learn ...
s and
cokernel The cokernel of a linear mapping of vector spaces is the quotient space of the codomain of by the image of . The dimension of the cokernel is called the ''corank'' of . Cokernels are dual to the kernels of category theory, hence the nam ...
s exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, Ab. The theory originated in an effort to unify several
cohomology theories In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewe ...
by Alexander Grothendieck and independently in the slightly earlier work of
David Buchsbaum David Alvin Buchsbaum (November 6, 1929 – January 8, 2021) was a mathematician at Brandeis University who worked on commutative algebra, homological algebra, and representation theory. He proved the Auslander–Buchsbaum formula and the Ausland ...
. Abelian categories are very ''stable'' categories; for example they are regular and they satisfy the
snake lemma The snake lemma is a tool used in mathematics, particularly homological algebra, to construct long exact sequences. The snake lemma is valid in every abelian category and is a crucial tool in homological algebra and its applications, for instance ...
. The
class Class or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used differentl ...
of abelian categories is closed under several categorical constructions, for example, the category of
chain complex In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or modules) and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of t ...
es of an abelian category, or the category of
functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and m ...
s from a
small category In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows asso ...
to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry,
cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewe ...
and pure category theory. Abelian categories are named after
Niels Henrik Abel Niels Henrik Abel ( , ; 5 August 1802 – 6 April 1829) was a Norwegian mathematician who made pioneering contributions in a variety of fields. His most famous single result is the first complete proof demonstrating the impossibility of solvin ...
.


Definitions

A category is abelian if it is '' preadditive'' and *it has a
zero object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
, *it has all binary
biproduct In category theory and its applications to mathematics, a biproduct of a finite collection of objects, in a category with zero objects, is both a product and a coproduct. In a preadditive category the notions of product and coproduct coincide fo ...
s, *it has all
kernels Kernel may refer to: Computing * Kernel (operating system), the central component of most operating systems * Kernel (image processing), a matrix used for image convolution * Compute kernel, in GPGPU programming * Kernel method, in machine learnin ...
and
cokernel The cokernel of a linear mapping of vector spaces is the quotient space of the codomain of by the image of . The dimension of the cokernel is called the ''corank'' of . Cokernels are dual to the kernels of category theory, hence the nam ...
s, and *all
monomorphism In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphism ...
s and
epimorphism In category theory, an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f ...
s are
normal Normal(s) or The Normal(s) may refer to: Film and television * ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie * ''Norma ...
. This definition is equivalent to the following "piecemeal" definition: * A category is '' preadditive'' if it is enriched over the
monoidal category In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left a ...
Ab of
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
s. This means that all
hom-set In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms ...
s are abelian groups and the composition of morphisms is bilinear. * A preadditive category is ''
additive Additive may refer to: Mathematics * Additive function, a function in number theory * Additive map, a function that preserves the addition operation * Additive set-functionn see Sigma additivity * Additive category, a preadditive category with f ...
'' if every
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, :\ is a finite set with five elements. T ...
of objects has a
biproduct In category theory and its applications to mathematics, a biproduct of a finite collection of objects, in a category with zero objects, is both a product and a coproduct. In a preadditive category the notions of product and coproduct coincide fo ...
. This means that we can form finite direct sums and direct products. In Def. 1.2.6, it is required that an additive category have a zero object (empty biproduct). * An additive category is '' preabelian'' if every morphism has both a
kernel Kernel may refer to: Computing * Kernel (operating system), the central component of most operating systems * Kernel (image processing), a matrix used for image convolution * Compute kernel, in GPGPU programming * Kernel method, in machine learn ...
and a
cokernel The cokernel of a linear mapping of vector spaces is the quotient space of the codomain of by the image of . The dimension of the cokernel is called the ''corank'' of . Cokernels are dual to the kernels of category theory, hence the nam ...
. * Finally, a preabelian category is abelian if every
monomorphism In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphism ...
and every
epimorphism In category theory, an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f ...
is
normal Normal(s) or The Normal(s) may refer to: Film and television * ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie * ''Norma ...
. This means that every monomorphism is a kernel of some morphism, and every epimorphism is a cokernel of some morphism. Note that the enriched structure on
hom-set In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms ...
s is a ''consequence'' of the first three axioms of the first definition. This highlights the foundational relevance of the category of
Abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
s in the theory and its canonical nature. The concept of
exact sequence An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context ...
arises naturally in this setting, and it turns out that
exact functor In mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Much ...
s, i.e. the functors preserving exact sequences in various senses, are the relevant functors between abelian categories. This ''exactness'' concept has been axiomatized in the theory of exact categories, forming a very special case of regular categories.


Examples

* As mentioned above, the category of all abelian groups is an abelian category. The category of all
finitely generated abelian group In abstract algebra, an abelian group (G,+) is called finitely generated if there exist finitely many elements x_1,\dots,x_s in G such that every x in G can be written in the form x = n_1x_1 + n_2x_2 + \cdots + n_sx_s for some integers n_1,\dots, n ...
s is also an abelian category, as is the category of all finite abelian groups. * If ''R'' is a
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
, then the category of all left (or right)
modules Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a s ...
over ''R'' is an abelian category. In fact, it can be shown that any small abelian category is equivalent to a
full subcategory In mathematics, specifically category theory, a subcategory of a category ''C'' is a category ''S'' whose objects are objects in ''C'' and whose morphisms are morphisms in ''C'' with the same identities and composition of morphisms. Intuitive ...
of such a category of modules (''
Mitchell's embedding theorem Mitchell's embedding theorem, also known as the Freyd–Mitchell theorem or the full embedding theorem, is a result about abelian categories; it essentially states that these categories, while rather abstractly defined, are in fact concrete catego ...
''). * If ''R'' is a left-
noetherian ring In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noethe ...
, then the category of finitely generated left modules over ''R'' is abelian. In particular, the category of finitely generated modules over a noetherian commutative ring is abelian; in this way, abelian categories show up in
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prom ...
. * As special cases of the two previous examples: the category of
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
s over a fixed
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
''k'' is abelian, as is the category of finite-
dimensional In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordi ...
vector spaces over ''k''. * If ''X'' is a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
, then the category of all (real or complex)
vector bundles In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every p ...
on ''X'' is not usually an abelian category, as there can be monomorphisms that are not kernels. * If ''X'' is a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
, then the category of all sheaves of abelian groups on ''X'' is an abelian category. More generally, the category of sheaves of abelian groups on a
Grothendieck site In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category ''C'' that makes the objects of ''C'' act like the open sets of a topological space. A category together with a choice of Grothendieck topology is c ...
is an abelian category. In this way, abelian categories show up in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify ...
and algebraic geometry. * If C is a
small category In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows asso ...
and A is an abelian category, then the category of all functors from C to A forms an abelian category. If C is small and preadditive, then the category of all
additive functor In mathematics, specifically in category theory, a preadditive category is another name for an Ab-category, i.e., a category that is enriched over the category of abelian groups, Ab. That is, an Ab-category C is a category such that every hom- ...
s from C to A also forms an abelian category. The latter is a generalization of the ''R''-module example, since a ring can be understood as a preadditive category with a single object.


Grothendieck's axioms

In his Tōhoku article, Grothendieck listed four additional axioms (and their duals) that an abelian category A might satisfy. These axioms are still in common use to this day. They are the following: * AB3) For every indexed family (''A''''i'') of objects of A, the
coproduct In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduc ...
*''A''i exists in A (i.e. A is
cocomplete In mathematics, a complete category is a category in which all small limits exist. That is, a category ''C'' is complete if every diagram ''F'' : ''J'' → ''C'' (where ''J'' is small) has a limit in ''C''. Dually, a cocomplete category is one ...
). * AB4) A satisfies AB3), and the coproduct of a family of monomorphisms is a monomorphism. * AB5) A satisfies AB3), and
filtered colimit In category theory, filtered categories generalize the notion of directed set understood as a category (hence called a directed category; while some use directed category as a synonym for a filtered category). There is a dual notion of cofiltered ...
s of
exact sequence An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context ...
s are exact. and their duals * AB3*) For every indexed family (''A''''i'') of objects of A, the
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
P''A''''i'' exists in A (i.e. A is
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
). * AB4*) A satisfies AB3*), and the product of a family of epimorphisms is an epimorphism. * AB5*) A satisfies AB3*), and filtered limits of exact sequences are exact. Axioms AB1) and AB2) were also given. They are what make an additive category abelian. Specifically: * AB1) Every morphism has a kernel and a cokernel. * AB2) For every morphism ''f'', the canonical morphism from coim ''f'' to im ''f'' is an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
. Grothendieck also gave axioms AB6) and AB6*). * AB6) A satisfies AB3), and given a family of filtered categories I_j, j\in J and maps A_j : I_j \to A, we have \prod_ \lim_ A_j = \lim_ \prod_ A_j, where lim denotes the filtered colimit. * AB6*) A satisfies AB3*), and given a family of cofiltered categories I_j, j\in J and maps A_j : I_j \to A, we have \sum_ \lim_ A_j = \lim_ \sum_ A_j, where lim denotes the cofiltered limit.


Elementary properties

Given any pair ''A'', ''B'' of objects in an abelian category, there is a special
zero morphism In category theory, a branch of mathematics, a zero morphism is a special kind of morphism exhibiting properties like the morphisms to and from a zero object. Definitions Suppose C is a category, and ''f'' : ''X'' → ''Y'' is a morphism in C. The ...
from ''A'' to ''B''. This can be defined as the
zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usual ...
element of the
hom-set In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms ...
Hom(''A'',''B''), since this is an abelian group. Alternatively, it can be defined as the unique composition ''A'' → 0 → ''B'', where 0 is the
zero object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
of the abelian category. In an abelian category, every morphism ''f'' can be written as the composition of an epimorphism followed by a monomorphism. This epimorphism is called the ''
coimage In algebra, the coimage of a homomorphism :f : A \rightarrow B is the quotient :\text f = A/\ker(f) of the domain by the kernel. The coimage is canonically isomorphic to the image by the first isomorphism theorem, when that theorem applies. ...
'' of ''f'', while the monomorphism is called the '' image'' of ''f''. Subobjects and quotient objects are
well-behaved In mathematics, when a mathematical phenomenon runs counter to some intuition, then the phenomenon is sometimes called pathological. On the other hand, if a phenomenon does not run counter to intuition, it is sometimes called well-behaved. Th ...
in abelian categories. For example, the
poset In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary r ...
of subobjects of any given object ''A'' is a
bounded lattice A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper boun ...
. Every abelian category A is a
module Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computing and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components * Mo ...
over the monoidal category of finitely generated abelian groups; that is, we can form a
tensor product In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otime ...
of a finitely generated abelian group ''G'' and any object ''A'' of A. The abelian category is also a
comodule In mathematics, a comodule or corepresentation is a concept dual to a module. The definition of a comodule over a coalgebra is formed by dualizing the definition of a module over an associative algebra. Formal definition Let ''K'' be a field, an ...
; Hom(''G'',''A'') can be interpreted as an object of A. If A is
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
, then we can remove the requirement that ''G'' be finitely generated; most generally, we can form
finitary In mathematics and logic, an operation is finitary if it has finite arity, i.e. if it has a finite number of input values. Similarly, an infinitary operation is one with an infinite number of input values. In standard mathematics, an operation ...
enriched limit Enrichment may refer to: * Behavioral enrichment, the practice of providing animals under managed care with stimuli such as natural and artificial objects * Data enrichment, appending or enhancing data with relevant context from other sources, se ...
s in A.


Related concepts

Abelian categories are the most general setting for homological algebra. All of the constructions used in that field are relevant, such as exact sequences, and especially
short exact sequence An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context ...
s, and
derived functor In mathematics, certain functors may be ''derived'' to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics. Motivation It was noted in vari ...
s. Important theorems that apply in all abelian categories include the
five lemma In mathematics, especially homological algebra and other applications of abelian category theory, the five lemma is an important and widely used lemma about commutative diagrams. The five lemma is not only valid for abelian categories but also work ...
(and the
short five lemma In mathematics, especially homological algebra and other applications of abelian category theory, the short five lemma is a special case of the five lemma. It states that for the following commutative diagram (in any abelian category, or in the ...
as a special case), as well as the
snake lemma The snake lemma is a tool used in mathematics, particularly homological algebra, to construct long exact sequences. The snake lemma is valid in every abelian category and is a crucial tool in homological algebra and its applications, for instance ...
(and the
nine lemma right In mathematics, the nine lemma (or 3×3 lemma) is a statement about commutative diagrams and exact sequences valid in the category of groups and any abelian category. It states: if the diagram to the right is a commutative diagram and all co ...
as a special case).


Semi-simple Abelian categories

An abelian category \mathbf is called semi-simple if there is a collection of objects \_ \in \text(\mathbf) called simple objects (meaning the only sub-objects of any X_i are the zero object 0 and itself) such that an object X \in \text(\mathbf) can be decomposed as a direct sum (denoting the
coproduct In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduc ...
of the abelian category)
X \cong \bigoplus_ X_i
This technical condition is rather strong and excludes many natural examples of abelian categories found in nature. For example, most module categories over a ring R are not semi-simple; in fact, this is the case if and only if R is a
semisimple ring In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itsel ...
.


Examples

Some Abelian categories found in nature are semi-simple, such as * Category of finite-dimensional
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
s \text(k) over a fixed field k * By
Maschke's theorem In mathematics, Maschke's theorem, named after Heinrich Maschke, is a theorem in group representation theory that concerns the decomposition of representations of a finite group into irreducible pieces. Maschke's theorem allows one to make gener ...
the category of representations \text_k(G) of a finite group G over a field k whose characteristic does not divide , G, is a semi-simple abelian category. * The category of
coherent sheaves In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with refer ...
on a
Noetherian In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite lengt ...
scheme A scheme is a systematic plan for the implementation of a certain idea. Scheme or schemer may refer to: Arts and entertainment * ''The Scheme'' (TV series), a BBC Scotland documentary series * The Scheme (band), an English pop band * ''The Schem ...
is semi-simple if and only if X is a finite disjoint union of irreducible points. This is equivalent to a finite coproduct of categories of vector spaces over different fields. Showing this is true in the forward direction is equivalent to showing all \text^1 groups vanish, meaning the
cohomological dimension In abstract algebra, cohomological dimension is an invariant of a group which measures the homological complexity of its representations. It has important applications in geometric group theory, topology, and algebraic number theory. Cohomologica ...
is 0. This only happens when the skyscraper sheaves k_x at a point x \in X have
Zariski tangent space In algebraic geometry, the Zariski tangent space is a construction that defines a tangent space at a point ''P'' on an algebraic variety ''V'' (and more generally). It does not use differential calculus, being based directly on abstract algebra, an ...
equal to zero, which is isomorphic to \text^1(k_x,k_x) using
local algebra In abstract algebra, more specifically ring theory, local rings are certain ring (mathematics), rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic variety, vari ...
for such a scheme.


Non-examples

There do exist some natural counter-examples of abelian categories which are not semi-simple, such as certain categories of
representations ''Representations'' is an interdisciplinary journal in the humanities published quarterly by the University of California Press. The journal was established in 1983 and is the founding publication of the New Historicism movement of the 1980s. It ...
. For example, the category of representations of the Lie group (\mathbb,+) has the representation
a \mapsto \begin 1 & a \\ 0 & 1 \end
which only has one subrepresentation of dimension 1. In fact, this is true for any
unipotent group In mathematics, a unipotent element ''r'' of a ring ''R'' is one such that ''r'' − 1 is a nilpotent element; in other words, (''r'' − 1)''n'' is zero for some ''n''. In particular, a square matrix ''M'' is a unipote ...
pg 112.


Subcategories of abelian categories

There are numerous types of (full, additive) subcategories of abelian categories that occur in nature, as well as some conflicting terminology. Let A be an abelian category, C a full, additive subcategory, and ''I'' the inclusion functor. * C is an exact subcategory if it is itself an
exact category In mathematics, an exact category is a concept of category theory due to Daniel Quillen which is designed to encapsulate the properties of short exact sequences in abelian categories without requiring that morphisms actually possess kernels and ...
and the inclusion ''I'' is an
exact functor In mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Much ...
. This occurs if and only if C is closed under pullbacks of epimorphisms and pushouts of monomorphisms. The exact sequences in C are thus the exact sequences in A for which all objects lie in C. * C is an abelian subcategory if it is itself an abelian category and the inclusion ''I'' is an
exact functor In mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Much ...
. This occurs if and only if C is closed under taking kernels and cokernels. Note that there are examples of full subcategories of an abelian category that are themselves abelian but where the inclusion functor is not exact, so they are not abelian subcategories (see below). * C is a thick subcategory if it is closed under taking direct summands and satisfies the 2-out-of-3 property on short exact sequences; that is, if 0 \to M' \to M \to M'' \to 0 is a short exact sequence in A such that two of M',M,M'' lie in C, then so does the third. In other words, C is closed under kernels of epimorphisms, cokernels of monomorphisms, and extensions. Note that P. Gabriel used the term ''thick subcategory'' to describe what we here call a ''Serre subcategory''. * C is a topologizing subcategory if it is closed under subquotients. * C is a
Serre subcategory In mathematics, Serre and localizing subcategories form important classes of subcategories of an abelian category. Localizing subcategories are certain Serre subcategories. They are strongly linked to the notion of a quotient category. Serre subca ...
if, for all short exact sequences 0 \to M' \to M \to M'' \to 0 in A we have ''M'' in C if and only if both M',M'' are in C. In other words, C is closed under extensions and subquotients. These subcategories are precisely the kernels of exact functors from A to another abelian category. * C is a localizing subcategory if it is a Serre subcategory such that the quotient functor Q\colon\mathbf A \to \mathbf A/\mathbf C admits a
right adjoint In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are kno ...
. * There are two competing notions of a wide subcategory. One version is that C contains every object of A (up to isomorphism); for a full subcategory this is obviously not interesting. (This is also called a lluf subcategory.) The other version is that C is closed under extensions. Here is an explicit example of a full, additive subcategory of an abelian category that is itself abelian but the inclusion functor is not exact. Let ''k'' be a field, T_n the algebra of upper-triangular n\times n matrices over ''k'', and \mathbf A_n the category of finite-dimensional T_n-modules. Then each \mathbf A_n is an abelian category and we have an inclusion functor I\colon\mathbf A_2 \to \mathbf A_3 identifying the simple projective, simple injective and indecomposable projective-injective modules. The essential image of ''I'' is a full, additive subcategory, but ''I'' is not exact.


History

Abelian categories were introduced by (under the name of "exact category") and in order to unify various cohomology theories. At the time, there was a cohomology theory for sheaves, and a cohomology theory for
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
s. The two were defined differently, but they had similar properties. In fact, much of category theory was developed as a language to study these similarities. Grothendieck unified the two theories: they both arise as
derived functor In mathematics, certain functors may be ''derived'' to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics. Motivation It was noted in vari ...
s on abelian categories; the abelian category of sheaves of abelian groups on a topological space, and the abelian category of ''G''-modules for a given group ''G''.


See also

*
Triangulated category In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy cat ...


References

* * * * * {{Authority control Additive categories Homological algebra Niels Henrik Abel